Final Exam Mathematical Physics, Prof. G. Palasantzas

- Total number of points 100
- 10 points for coming to the final exam
- Justify briefly your answers for all problems

Problem 2 (10 points) Consider the series $\sum_{n=1}^{\infty}{\frac{(x+3)}{n 5^{n}}}^{n}$. For which x is the series convergent?

Problem 3 (15 points)
(a: 8 points)
(b: 7 points)

Let L be a nonzero real number.
(a) Show that the boundary-value problem $y^{\prime \prime}+\lambda y=0$, $y(0)=0, y(L)=0$ has only the trivial solution $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) For the case $\lambda>0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.

Problem 4 (15 points)

Find periodic solutions of the form $X(t)=\sum_{n=-\infty}^{+\infty} X_{n} e^{i n t}$ for the second order differential equation:

$$
m \frac{d^{2} X}{d t^{2}}+c \frac{d X}{d t}+k X=F_{1} \cos (2 t)+F_{2} \cos (4 t)
$$

where m, c, and k are real positive numbers.

Problem 5 (20 points)

(a: 10 points) Consider the periodic function $F(x)=\sum_{n=-\infty}^{+\infty} f_{n} e^{i n x}$ in the interval $[-\pi, \pi]$.
Prove that: $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|F(x)|^{2} d x=\sum_{n=-\infty}^{+\infty}\left|f_{n}\right|^{2}$
(b: 10 points) Consider the Fourier transform definitions $F(k)=\int_{-\infty}^{+\infty} F(x) e^{-i 2 \pi k x} d x$ and $\delta(k)=\int_{-\infty}^{+\infty} e^{-i 2 \pi k x} d x$ Calculate the Fourier transform of $F(x)=5+3 \cos ^{2}(5 \pi \varepsilon x)$

Problem 6 (20 points)

(a: 10 points) Consider the boundary value problem for the one-dimensional heat equation of a bar with length L and isolated temperature ends (Neumann boundary conditions):
$\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u=u(x, t), \quad t>0, \quad 0<x<L$
$u(x, 0)=f(x)$,
$u_{x}(x=0, t)=u_{x}(x=L, t)=0\left(u_{x}=\vartheta u / \vartheta x, \mathrm{t} \geq 0\right)$.
Show that the general solution is given in this case by: $\quad u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} \cos \mu_{n} x$
where $\lambda_{n}=c \mu_{n}$ and $\mu_{n}=n \pi / L$.
(b: 10 points) Calculate the solution $u(x, t)$ for $f(x)=D+2 A \cos (3 \pi x / L) \cos ^{2}(6 \pi x / L)$

P'roblem 1
Tahe term $O_{n}=\left(1+\frac{2}{n}\right)^{4 n}$
Tahe $W_{n}=\operatorname{Tn} O O_{n}=4 n \operatorname{In}\left(1+\frac{q}{n}\right)$

$$
\lim _{n \rightarrow \infty} W_{n}=4 \lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{2}{n}\right)}{\frac{1}{n}}
$$

Apply l'Hosinals vule

$$
\begin{aligned}
& \text { Hpply l'Hositais } \\
& \lim _{n \rightarrow \infty} w_{n}=4 \lim _{n \rightarrow \infty} \frac{\left[1 / 1+\frac{2}{n}\right]\left(-\frac{2}{n^{2}}\right)}{-1 / n^{2}}=\varnothing \\
& \lim _{n \rightarrow \infty} w_{n}=8 \lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}}=8
\end{aligned}
$$

Therefore $\quad \lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} e^{w_{n}}=e^{\lim _{n \rightarrow \infty} w_{n}}=e^{8} \# 0$
Since $\quad \lim _{n \rightarrow \infty} a_{n} \# 0 \sum_{n=1}^{\infty} \alpha_{n}$ is divergent

Problem 2

$$
\begin{aligned}
& \text { Apply ratio test } \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{|x+3|^{n+1}}{(n+1) 5^{n+1}}}{\frac{|x+3|^{n}}{n 5^{n}}}= \\
& =\lim _{n \rightarrow \infty} \frac{|x+3|}{\left(1+\frac{1}{n}\right) 5}=\frac{|x+3|}{5}<14=p \\
& |x+3|<5 A=D \quad-8<x<2
\end{aligned}
$$

- $\sum_{n=1}^{\infty} a_{n}$ orbsolutely convergent for $-8<x<2$
(For $x=2$ we get the series $\sum_{n=1}^{\infty} \frac{1}{n}$ divergent Harmonic series.
- For $x=-8$ we ged the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which is an oclternatiay series \square Conditionally convergent Thus $\sum_{n=1}^{\infty} a_{n}$ is convergent for $-8 \leq x<2$

Problem 3

(a) Case $1(\lambda=0): y^{\prime \prime}+\lambda y=0 \Rightarrow y^{\prime \prime}=0$ which has an auxiliary equation $r^{2}=0 \Rightarrow r=0 \Rightarrow y=c_{1}+c_{2} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} L \Rightarrow c_{1}=c_{2}=0$. Thus $y=0$.

Case $2(\lambda<0): y^{\prime \prime}+\lambda y=0$ has auxiliary equation $r^{2}=-\lambda \Rightarrow r= \pm \sqrt{-\lambda}$ [distinct and real since $\lambda<0$] \Rightarrow $y=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$ where $y(0)=0$ and $y(L)=0$. Thus $0=y(0)=c_{1}+c_{2}$ (*) and $0=y(L)=c_{1} e^{\sqrt{-\lambda} L}+c_{2} e^{-\sqrt{-\lambda} L}(\dagger)$.
Multiplying (*) by $e^{\sqrt{-\lambda} L}$ and subtracting (\dagger) gives $c_{2}\left(e^{\sqrt{-\lambda} L}-e^{-\sqrt{-\lambda} L}\right)=0 \Rightarrow c_{2}=0$ and thus $c_{1}=0$ from (*). Thus $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) $y^{\prime \prime}+\lambda y=0$ has an auxiliary equation $r^{2}+\lambda=0 \Rightarrow r= \pm i \sqrt{\lambda} \Rightarrow y=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} \sin \sqrt{\lambda} L$ since $c_{1}=0$. Since we cannot have a trivial solution, $c_{2} \neq 0$ and thus $\sin \sqrt{\lambda} L=0 \Rightarrow \sqrt{\lambda} L=n \pi$ where n is an integer $\Rightarrow \lambda=n^{2} \pi^{2} / L^{2}$ and $y=c_{2} \sin (n \pi x / L)$ where n is an integer.

Problem 4
write $\cos (2 \cdot t)=\frac{1}{2} e^{i 2 t}+\frac{1}{2} e^{-i 2 t}$

$$
\cos (4 t)=\frac{1}{2} e^{i 4 t}+\frac{1}{2} e^{-i 4 t}
$$

Thus we have
Fit)

$$
m x^{\prime \prime}+c x^{\prime}+K X=\frac{F_{1}}{2} e^{i 2 t}+\frac{F_{1}}{2} e^{-i 2 t}+\frac{F_{2}}{2} e^{i 4-t}+\frac{F_{2}}{2} e^{-i 4 t}
$$

substitute $X(t)=\sum_{-0}^{\text {to c }} x_{n} e^{\text {int }}$ into the differential
e guation:-

$$
\begin{aligned}
& e \text { gyration }: \\
& \sum_{-\infty}^{+\infty}\left(-m n^{2}\right) x_{n} e^{i n t}+\sum_{-\infty}^{+\infty} C(i n) x e^{i n t}+\sum_{-\infty}^{+\infty} k x_{n} e^{i n t}=F(t) \\
& \sum_{-\infty}^{+\infty}\left[\left(k-m n^{2}\right)+i c n\right] x_{n} e^{i n t}=F(t)
\end{aligned}
$$

O lIny the terms $n= \pm 2, \pm 4$ will have $x_{n} \neq 0$

$$
\begin{aligned}
& \frac{50+h a t:}{[(k-4 m)+i 2 c] \times_{2}=\frac{F_{1}}{2},[(k-4 m)=i 2 c] \times-2=\frac{F_{1}}{2}} \\
& {[(k-16 m)+i 4 c] \times_{4}=\frac{F_{2}}{2},[(K-16 m)-i 4 c] \times-4=\frac{F_{2}}{2}}
\end{aligned}
$$

Thus the hove the periodic solution

$$
\begin{aligned}
& \text { Thus the hove the } \\
& \begin{aligned}
x(t) & =\frac{F_{1} e^{i 2 t}}{2[(k-4 m)+i 2 c]}+\frac{F_{2} e^{-i \varepsilon t}}{2[(k-4 m)-i 2 c]}+ \\
& +\frac{F_{2} e^{i 4 t}}{2[(k-16 m)+i 4 c]}+\frac{F_{2} e^{-i 4 t}}{2[(k-16 m)-i 4 c]}
\end{aligned}
\end{aligned}
$$

Problem 5
(a)

$$
\int_{-n}^{n}|F(x)|^{2} d x=\int_{-m}^{n} \sum_{-\infty}^{+\infty} f_{n} e^{i n x} \sum_{-\infty}^{+\infty} f_{m}^{*} e^{-i m x} d x(1)
$$

$|F(x)|^{2}=F F^{*}, F^{*}$ complex confugate
Thus we have

$$
\begin{align*}
& \int_{-n}^{\pi}|f(x)|^{2} d x=\sum_{-\infty}^{+\infty} \sum_{-\infty}^{+\infty} f_{n} f_{m}^{*} \int_{-n}^{n} e^{i(n-m) x} d x \text { (2) } \tag{2}\\
& \int_{-n}^{n} e^{i(n-m) x} d x=\int_{-n}^{n} \cos [(n-m) x] d x+i \int_{-n}^{n} \sin [(n-m) x] d x \\
& 2 n \delta_{m n}
\end{align*}
$$

So we have $\int_{-n}^{n} e^{i(n-m) x} d x=2 n \delta m n$
Alternativelly one con also sat:

$$
\begin{equation*}
\int_{-n}^{\pi} e^{i(n-m) \times} d \times\left.\sum_{i m n}^{\infty} \frac{1}{i(n-m)} e^{i=1(n-m) \times m=n}\right|_{-\infty} ^{n}(n \neq m)=0^{2 n \delta m n} \tag{3}
\end{equation*}
$$

(2) \&

$$
\begin{aligned}
& \text { (3) } \int_{-n}^{\pi}|F(x)|^{2} d x=\sum_{-\infty}^{+\infty} \sum_{-\infty}^{+\infty} f_{n} f_{m}^{*} \text { qn imn }=p \\
& \int_{-n}^{n}|F(x)|^{2} d x=2 \pi \sum_{-\infty}^{+\infty}\left|f_{n}\right|^{2} \Leftrightarrow \frac{1}{2 \pi} \int_{-n}^{\pi}|F(x)|^{2} d x=\sum_{-\infty}^{+\infty}\left|f_{n}\right|^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (b) } F(x)=5+\frac{3}{4}\left(e^{i 5 n \varepsilon x}+e^{-i 5 n \varepsilon x}\right)^{q}=p \\
& F(x)=5+\frac{3}{4}\left(e^{i 10 n \varepsilon x}+e^{-i 10 n \varepsilon x}+2\right)=p \\
& F(x)=\frac{13}{2}+\frac{3}{4} e^{i 10 n \varepsilon x}+\frac{3}{4} e^{-i 10 n \varepsilon x}
\end{aligned}
$$

calculace $F(h)$:

$$
\begin{aligned}
& \text { calculate } F(h): \\
& F(H)=\int_{-\infty}^{+\infty}\left[\frac{13}{2}+\frac{3}{4} e^{i 10 n \varepsilon x}+\frac{3}{4} e^{-i 10 \pi \varepsilon x}\right] e^{-i 2 \pi k x} d x \\
& \Rightarrow F(H)=\frac{13}{2} \underbrace{e^{+\infty} \frac{3}{4} \int_{-\infty}^{+\infty} e^{-i \varepsilon n(k-5 \varepsilon) x} d x+\frac{3}{4} \underbrace{\int_{-\infty}^{-\infty} e^{-i \varepsilon n(k+\delta \varepsilon) x}}_{\delta(k-5 \varepsilon)} d x}_{\int_{-\infty}^{+\infty} e^{-i 2 n h x} d x} \underbrace{}_{\delta(k+5 \varepsilon)} \\
& =0(H)=\frac{13}{2} \delta(H)+\frac{3}{4} \delta(k-5 \varepsilon)+\frac{3}{4} \delta(k+5 \varepsilon)
\end{aligned}
$$

Assuming that $u(x, t)=X(x) T(t)$, the heat equation (1) becomes

$$
X T^{\prime}=c^{2} X^{\prime \prime} T
$$

This implies

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{c^{2} T}=k
$$

which we write as

$$
\begin{align*}
X^{\prime \prime}-k X & =0 \tag{4}\\
T^{\prime}-c^{2} k T & =0 \tag{5}
\end{align*}
$$

The initial conditions (2) become $X^{\prime}(0) T(t)=X^{\prime}(L) T(t)=0$, or

$$
X^{\prime}(0)=X^{\prime}(L)=0
$$

(6)

The ODE (4) is now $X^{\prime \prime}+\mu^{2} X=0$ with solutions

$$
X=c_{1} \cos \mu x+c_{2} \sin \mu x
$$

The boundary conditions (6) yield

$$
\begin{aligned}
& 0=X^{\prime}(0)=-\mu c_{1} \sin 0+\mu c_{2} \cos 0=\mu c_{2} \\
& 0=X^{\prime}(L)=-\mu c_{1} \sin \mu L+\mu c_{2} \cos \mu L
\end{aligned}
$$

The first of these gives $c_{2}=0$. In order for X to be nontrivial, the second shows that we also need

$$
\sin \mu L=0
$$

This can occur if and only if $\mu L=n \pi$, that is

$$
\mu=\mu_{n}=\frac{n \pi}{L}, n= \pm 1, \pm 2, \pm 3, \ldots
$$

Choosing $c_{1}=1$ yields the solutions

$$
X_{n}=\cos \mu_{n} x, n=1,2,3, \ldots
$$

For each n the corresponding equation (5) for T becomes $T^{\prime}=-\lambda_{n}^{2} T$, with $\lambda_{n}=c \mu_{n}$. Up to a constant multiple, the solution is

$$
T_{n}=e^{-\lambda_{n}^{2} t}
$$

Multiplying these together gives the nth normal mode

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\lambda_{n}^{2} t} \cos \mu_{n} x, n=1,2,3, \ldots
$$

where $\mu_{n}=n \pi / L$ and $\lambda_{n}=c \mu_{n}$.
The principle of superposition now guarantees that for any choice of constants $a_{0}, a_{1}, a_{2}, \ldots$

$$
\begin{equation*}
u(x, t)=a_{0} u_{0}+\sum_{n=1}^{\infty} a_{n} u_{n}=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} \cos \mu_{n} x \tag{7}
\end{equation*}
$$

is a solution of the heat equation (1) with the Neumann boundary conditions (2).
(b) $2 \cos (3 \pi x / L) \cos ^{2}(6 \pi x / L)=\cos (3 \pi x / L)[\cos (12 \pi x / L)+1]\left\{\right.$ because $\left.\cos ^{2}(6 \pi x / L)=[\cos (12 \pi x / L)+1] / 2\right\}$

Thus we have:
$2 \cos (3 \pi x / L) \cos ^{2}(6 \pi x / L)=\cos (3 \pi x / L) \cos (12 \pi x / L)+\cos (3 \pi x / L)=$ $[\cos (15 \pi x / L) / 2]+[\cos (9 \pi x / L) / 2]+\cos (3 \pi x / L)$

Thus $F(x)=D+[A / 2] \cos (15 \pi x / L)+[A / 2] \cos (9 \pi x / L)+A \cos (3 \pi x / L)$
As a result if we set $t=0$ in the solution for $u(x, t=0)=F(x)$ then weobtain that only the terms with $n=0,3,9,15$ are non-zero so that

```
ao=D
a3=A
a9=A/2
a15=A/2
an=0(n\geq1 and n\not=3,9,15)
```

Thus the solution for $t>0$ reads simply of the form:

$$
\begin{aligned}
u(x, t)= & D+A \exp \left[-(3 \pi x c / L)^{2} t\right] \cos (3 \pi x / L)+[A / 2] \exp \left[-(9 \pi x c / L)^{2} t\right] \cos (9 \pi x / L) \\
& +[A / 2] \exp \left[-(15 \pi x c / L)^{2} t\right] \cos (15 \pi x / L)
\end{aligned}
$$

